Effect of cell shape and packing density on granulosa cell proliferation and formation of multiple layers during early follicle development in the ovary.

نویسندگان

  • Patricia Da Silva-Buttkus
  • Gayani S Jayasooriya
  • Jocelyn M Mora
  • Margaret Mobberley
  • Timothy A Ryder
  • Marianne Baithun
  • Jaroslav Stark
  • Stephen Franks
  • Kate Hardy
چکیده

The postnatal mouse ovary is rich in quiescent and early-growing oocytes, each one surrounded by a layer of somatic granulosa cells (GCs) on a basal lamina. As oocytes start to grow the GCs change shape from flattened to cuboidal, increase their proliferation and form multiple layers, providing a unique model for studying the relationship between cell shape, proliferation and multilayering within the context of two different intercommunicating cell types: somatic and germ cells. Proliferation of GCs was quantified using immunohistochemistry for Ki67 and demonstrated that, unusually, cuboidal cells divided more than flat cells. As a second layer of GCs started to appear, cells on the basal lamina reached maximum packing density and the axes of their mitoses became perpendicular to the basal lamina, resulting in cells dividing inwards to form second and subsequent layers. Proliferation of basal GCs was less than that of inner cells. Ultrastructurally, collagen fibrils outside the basal lamina became more numerous as follicles developed. We propose that the basement membrane and/or theca cells that surround the follicle provide an important confinement for rapidly dividing columnar cells so that they attain maximum packing density, which restricts lateral mitosis and promotes inwardly oriented cell divisions and subsequent multilayering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-228: Altered Expression of Folliclestimulating Hormone Receptor and Luteinizing Hormone Receptor in Granulosa Cells from Women with Polycystic Ovary Syndrome

Background: Polycystic ovary syndrome (PCOS) is a common complex genetic endocrinopathy, affecting 5 - 10% of women at reproductive age. PCO granulosa cells seem to have abnormal responses to follicle- stimulating hormone (FSH). FSH is considered to be a pituitary glycoprotein that plays an important role during folliculogenesis as it promotes the proliferation and differentiation of granulosa ...

متن کامل

P-198: Study Effects of EMF on Pathology of Ovary in Newborn Rats during Developmental Period

Background: The effect of electromagnetic field (EMF) as an environmental factor on different organs including female reproductive system is of critical concern. In view of the fact that embryo fetuses and young, growing animals are more susceptible to any xenobiotic during gestational and lactation stages of gonadal development may it lead to permanent damage to the gonads. The early phases of...

متن کامل

Effect of Different Concentrations of Forskolin Along with Mature Granulosa Cell Co-Culturing on Mouse Embryonic Stem Cell Differentiation into Germ-Like Cells

Background: Germ cell development processes are influenced by soluble factors and intercellular signaling events between them and the neighboring somatic cells. More insight into the molecular biology of the germ cell development from embryonic stem (ES) cells and investigation of appropriate factors, specifically those targeting differentiation process, is of great importance. In this study, w...

متن کامل

P-73: Morphological and Histochemical Detection of Proliferating Cells in Oovarian Follicle induced by Anticancer Drug Study

Background: Infertility problem affect more than 15% of young couples in different societies. One of the known causes of ovulation disorder is chemotherapy in patients with cancer. This side effect may last from ten years up to the end of the life. Since anticancer drugs are mainly insert their effect through decreasing of cell proliferation, the aim of the present study is to investigate, anti...

متن کامل

Improved BALB/c mice granulosa cell functions using purified alginate scaffold

Alginate, a non-toxic polysaccharide isolated from brown algae, is a widely used 3-dimensional (3D) porous scaffold for the granulosa cell and follicle encapsulation. However, impurities in commercial alginate can lead to alginate biocompatibility reduction. The aim of this study was to evaluate in vitro behavior of the granulosa cells seeded on the purified alginate in varying concent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 121 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2008